Cardiomyocyte-Restricted Deletion of PPARβ/δ in PPARα-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation

نویسندگان

  • Jian Liu
  • Peiyong Wang
  • Lan He
  • Yuquan Li
  • Jinwen Luo
  • Lihong Cheng
  • Qianhong Qin
  • Lawrence A. Brako
  • Woo-kuen Lo
  • William Lewis
  • Qinglin Yang
چکیده

It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a PPARα-null background would alter the pathological development in mice with cardiomyocyte-restricted PPARβ/δ deficiency. In the present study, a mouse model with long-term PPARβ/δ deficiency in PPARα-null background showed a comparably reduced cardiac expression of lipid metabolism to those of single PPAR-deficient mouse models. The PPARα-null background did not rescue or aggravate the cardiac pathological development linked to cardiomyocyte-restricted PPARβ/δ deficiency. Moreover, PPARα-null did not alter the phenotypic development in adult mice with the short-term deletion of PPARβ/δ in their hearts, which showed mitochondrial abnormalities, depressed cardiac performance, and cardiac hypertrophy with attenuated expression of key factors in mitochondrial biogenesis and defense. The present study demonstrates that cardiomyocyte-restricted deletion of PPARβ/δ in PPARα-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of fatty acid oxidation. Therefore, PPARβ/δ is essential for maintaining mitochondrial biogenesis and defense in cardiomyocytes independent of PPARα.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nuclear receptor PPARβ/δ programs muscle glucose metabolism in cooperation with AMPK and MEF2.

To identify new gene regulatory pathways controlling skeletal muscle energy metabolism, comparative studies were conducted on muscle-specific transgenic mouse lines expressing the nuclear receptors peroxisome proliferator-activated receptor α (PPARα; muscle creatine kinase [MCK]-PPARα) or PPARβ/δ (MCK-PPARβ/δ). MCK-PPARβ/δ mice are known to have enhanced exercise performance, whereas MCK-PPARα ...

متن کامل

Carnitine transporter OCTN2 and carnitine uptake in bovine kidney cells is regulated by peroxisome proliferator-activated receptor β/δ

BACKGROUND Peroxisome proliferator-activated receptor α (PPARα), a central regulator of fatty acid catabolism, has recently been shown to be a transcriptional regulator of the gene encoding the carnitine transporter novel organic cation transporter 2 (OCTN2) in cattle. Whether PPARβ/δ, another PPAR subtype, which has partially overlapping functions as PPARα and is known to share a large set of ...

متن کامل

Peroxisome Proliferator-Activated Receptor Is an Essential Transcriptional Regulator for Mitochondrial Protection and Biogenesis in Adult Heart

Rationale: Peroxisome proliferator-activated receptors (PPARs) ( , , and / ) are nuclear hormone receptors and ligand-activated transcription factors that serve as key determinants of myocardial fatty acid metabolism. Long-term cardiomyocyte-restricted PPAR deficiency in mice leads to depressed myocardial fatty acid oxidation, bioenergetics, and premature death with lipotoxic cardiomyopathy. Ob...

متن کامل

Peroxisome proliferator-activated receptor {delta} is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart.

RATIONALE Peroxisome proliferator-activated receptors (PPARs) (alpha, gamma, and delta/beta) are nuclear hormone receptors and ligand-activated transcription factors that serve as key determinants of myocardial fatty acid metabolism. Long-term cardiomyocyte-restricted PPARdelta deficiency in mice leads to depressed myocardial fatty acid oxidation, bioenergetics, and premature death with lipotox...

متن کامل

The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation.

Metabolic syndrome-associated dyslipidemia is mainly initiated by hepatic overproduction of the plasma lipoproteins carrying triglycerides. Here we examined the effects of the peroxisome proliferator-activated receptors (PPAR)-β/δ activator GW501516 on high-fat diet (HFD)-induced hypertriglyceridemia and hepatic fatty acid oxidation. Exposure to the HFD caused hypertriglyceridemia that was acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011